产品目录

Product Catalog

您现在的位置:首页 > 技术支持 > 详细内容
动态疲劳根据工件的工作环境能分成几种状态
点击次数:854 更新时间:2022-06-10
  动态疲劳试验机用于进行测定金属、合金材料及其构件(如操作关节、固接件、螺旋运动件等)在室温状态下的拉伸、压缩或拉压交变负荷的疲劳特性、疲劳寿命、预制裂纹及裂纹扩展试验。
  动态疲劳根据工件的工作环境可分为:
  腐蚀疲劳、低温疲劳、高温疲劳。
  一般把材料与结构发生疲劳损伤前的强度定义为“疲劳极限”。
  冲击疲劳
  是指重复冲击载荷所引起的疲劳。当冲击次数N小于500~1000次即破坏时,零件的断裂形式与一次冲击相同;当冲击次数大于10次时的破坏,零件断裂属于疲劳断裂,并具有典型的疲劳断口特征。在设计计算中,当冲击次数大于100次时,用类似于疲劳的方法计算强度。
  接触疲劳
  零件在循环接触应力作用下产生累计损伤,经过一定循环次数后,接触表面发生麻点、浅层或深层剥落的过程,称为接触疲劳。接触疲劳是齿轮、滚动轴承和凸轮轴的典型失效形式。
  热疲劳
  由于温度循环产生循环热应力所导致的材料或零件的疲劳称为热疲劳。温度循环变化导致材料体积循环变化,当材料的自由膨胀或收缩受到约束时,产生循环热应力或循环热应变。
  产生热应力情况主要有两种:
  1、零件的热胀冷缩受到固持零件的外加约束而产生热应力;
  2、虽然没有外加约束,但两件各部分的温度不一致,存在着温度梯度,导致各部分热胀冷缩不一致而产生热应力。
  温度交变作用,除了产生热应力外,还会导致材料内部组织变化,使强度和塑性降低。热疲劳条件下的温度分布不是均匀的,在温度梯度大的地方,塑性变形严重,热应变集中较大;当热应变超过弹性极*,热应力与热应变就不呈线性关系,此时求解热应力就要按弹塑性关系处理。热疲劳裂纹从表面开始向内部扩展,方向与表面垂直。
  热应力的大小与热胀系数成正比,热胀系数越大,热应力越大。所以在选材时要考虑材料的匹配,即不同材料热膨胀系数的差别不能太大。在相同的热应变条件下,材料的弹性模量越大,热应力就越大;温度循环变化越大,即上下限温差越大,则热应力就越大;材料的热导率越低,则快速加速或冷却过程中,温度梯度越陡,热应力也越大。
  腐蚀疲劳
  腐蚀介质和循环应力(应变)的复合作用所导致的疲劳称为腐蚀疲劳。腐蚀介质与静应力共同作用产生的腐蚀破坏称为应力腐蚀。两者的区别在于,应力腐蚀只有在特定的腐蚀环境中才发生,而腐蚀疲劳在任何腐蚀环境及循环应力复合作用下,都会发生腐蚀疲劳断裂。应力腐蚀开裂,有一个临界应力强度因子K,当应力强度因子K≤K,就不会发生应力腐蚀开裂;而腐蚀疲劳不存在临界应力强度因子,只要在腐蚀环境中有循环应力继续作用,断裂总是会发生的。
  区 别:
  腐蚀疲劳与空气中的疲劳区别在于,腐蚀疲劳过程中,除不锈钢和渗氮钢以外,机械零部件表面均变色。腐蚀疲劳形成的裂纹数目较多,即呈多裂纹。腐蚀疲劳的S-N曲线没有水平部分,因此,对于腐蚀疲劳极限,一定要指出是某一寿命下的值,即只存在条件腐蚀疲劳极限。影响腐蚀疲劳强度的因素要比空气中疲劳多而且复杂,如在空气中,疲劳试验频率小于1000HZ时,频率基本上对疲劳极限没有影响,但腐蚀疲劳在频率的整个范围内都有影响。

分享到:

加入收藏 | 返回列表 | 返回顶部
优肯科技股份有限公司 版权所有
0532-85016991,85017721
13854256238
点击这里给我发消息